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SUMMARY 

There are spurious phenomena in the numerical approximation of the hyperbolic equations of fluid dynamics 
that may be investigated by invoking concepts which originate from wave propagation theory. Many of the 
significant results which have been obtained by pursuing this kind of analysis are reviewed in this paper by 
using as an illustration a family of implicit approximations of the simple linear advection equation. Included 
in this family of algorithms are the common six-point implicit finite difference scheme, the linear finite 
element/Galerkin scheme and the ‘box’ method. 

The phase and group velocities of sinusoidal solutions are brought into the analysis of the accuracy and 
of the spurious reflection or scattering phenomena which are created at computational boundaries and in 
non-uniform grids. General properties become apparent in this Fourier/wave propagation approach to the 
analysis. One of these is in the form of an analogy with quantum mechanics. Another shows that certain 
energy norms of the errors are independent of time discretization, i.e. depend on space discretization alone. 
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INTRODUCTION 

Many spurious phenomena in the numerical approximation of the hyperbolic equations of fluid 
dynamics may be explained by invoking concepts which originate from wave propagation theory. 
The purpose of this paper is to illustrate this by using as an example a family of implicit algorithms 
which have in common the fact that they are conservative and that they use a central finite 
difference approximation to the spatial derivatives. Included in this family of algorithms is the 
common six-point implicit finite difference scheme, a linear finite elements/Galerkin scheme and 
the so-called ‘box’ or ‘quad’ scheme. 

Conservative wave propagation in a dispersive medium may be characterized by its phase 
velocity and its group velocity. Both concepts are needed in the analysis of wave propagation in 
numerical fluid dynamics: knowledge of the distortion in the phase velocity introduced by the 
approximation is sufticient to express the global error in the numerical solution of the Cauchy 
problem. On the other hand, the group velocity and the attending concept of energy propagation 
play an essential role in the analysis of parasitic reflection phenomena which manifest themselves 
at computational boundaries and at interior points of non-uniform grids. 

It is in the investigation of these parasitic reflection phenomena that the wave propagation 
viewpoint takes its full power in the analysis of numerical algorithms for hyperbolic equations. 
Simple Fourier analysis of the numerical approximation of the pure initial value (or Cauchy) 
problem on a regular mesh has been well understood. It was first used by von Neumann who, 
in the 194Os, brought into numerical analysis the concept of ‘sinusoidal trial solution’, that was 
well known to fluid dynamicists as a means of testing the stability of flows;’ von Neumann’s use 
of this tool to test the stability of numerical approximations of the initial value problem was 
subsequently extended by others to investigate questions of accuracy as But it is more 
recently (with a few exceptions) that the wave propagation, group velocity and energy flow 
concepts which are accessible through Fourier analysis have been recognized as a means of 
investigating the more difficult questions associated with boundaries and irregular grids. Typical 
contributions to this line of investigation may be found in References 12-25. 

This review paper consists of two parts. In the first part (ending with section 10) the nature 
of numerical solutions in response to specified initial/boundary data is examined from the wave 
propagation viewpoint. In the second part (sections 1 1-16) those results are applied to the 
analysis of a number of spurious reflection phenomena which occur at boundaries and, in the 
case of non-uniform grids, at interior points of the computing domain. 

Reviews give an opportunity to bring to the fore general properties and principles which may 
transcend the mathematical details. A first property of this kind which emerges from the analysis 
is in the form of an analogy: error wave propagation in computational fluid dynamics and the 
motion of particles in quantum mechanics share similar mathematics, which materialize 
themselves in a number of similar phenomena (cf. sections 6, 11 and 15). Another general property 
is contained in an independence or invariance principle which says that, when measured with 
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appropriate energy norms, spurious reflection phenomena are independent of time discretization, 
i.e. depend on space discretization alone (see in particular section 13). 

PART I. PROPAGATION PROPERTIES 

1. PROBLEM STATEMENT AND NOTATIONS 

We shall use as a model the simple hyperbolic (advection) equation: 

au au 
at ax  -+c-=o 

and its numerical approximation on the regular grid: 

xn = nh; n = 0, & 1, ? 2 , .  . . (2)  
The class of algorithms that will be considered is based on the 3-point semi-discretization: 

where j? is a free parameter and the un are approximations of U at the nodes: 

un(t) N U(xn, t ) .  (4) 
When p # 0, then (3) is an implicit semi-discretization (i.e. derivatives on the left hand side are 
not given explicitly). This may also be viewed as the algorithm which is obtained when U ( x ,  t )  
is approximated with linear finite elements: 

otherwise, 

together with a method of weighted residuals with weights gn(x):  

1, when Ix -xnI<2Bh 

The conditions 

au au 
at ax B’=-+c--  

then result precisely in the system of equations (3). When p = 0, then (3) is the simple central 
finite difference approximation of (1); when = 1/3, then (3) is the semi-discretization obtained 
with the linear finite elements/Galerkin method; and when B = 1/2, then (3) is what is called the 
‘box’ or ‘quad’ method. Moreover, the finite difference case ( P = O )  may be considered as the 
‘lumped mass’ version of the finite element case (p  = 1/3).’6 
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The box scheme is a singular member of this family of algorithms and has distinctively unique 
properties. As will be seen, analysing this scheme within the broader context of a class of methods 
provides an insight into those unique properties which could not be otherwise obtained. 

Full discretizations of the equation are obtained when a discrete stepping method is applied 
to the integration in time. The one we shall attach our attention to is the Crank-Nicolson 
method, but our results will have obvious applicability to other cases. For convenience, we 
rewrite (3) as 

where A ,  and A ,  are the operators 

P -  A ,  = 1 - b + - ( E  I + E), 2 
C 

A , =  - - ( E - E - ' )  
2h 

and E is the space shift operator defined by 

u,,, = E M , .  

The Crank-Nicolson time stepping method may then be expressed as 

ui N U(x,,jAt), 

or, in operator form 

M(Z)u', = A(E)u',. (12) 

Here, M and A are the operators 

2 2 - 1  
M ( 2 )  = -- 

AtZ+1  

and 2 is the time shift operator, defined by 

n (15) ui+ 1 = Zui 
n .  

The procedure which consists of approximating spatial derivatives at first and then applying 
consistently a time stepping algorithm to the resulting semi-discretization is sometimes called a 
'method of lines' after Russian authors who coined this term in the 1940s (see also Reference 27). 

The simple first order equations (l), (3) and (12) are of course meant to be models of hyperbolic 
systems of an order greater than one (typically the equations of fluid dynamics) and of their 
numerical approximation, to be used for the analysis of the behaviour of errors. It is indeed the 
case that errors, which may be viewed as small perturbations superimposed on the solutions of 
these systems, are described locally by linear equations which, when written in their characteristic 
form, consist of several first order independent equations of the kind used in these models. 
Several of the results derived in this paper will coincide in specific cases with similar results 
obtained with linearized models of the shallow water equations, for example by Chu and Sereny,I3 
Foreman6." and Cathers and O ' C ~ n n o r . ~  
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2. FOURIER ANALYSIS 

Equation (1) admits sinusoidal solutions of the form 
,y = e i ( a t  + 0) 

7 

where the frequency w and the wave number 5 are related by 

w =  - c r .  

The linearity of this relation expresses the lack of dispersion in the solutions of that equation. But 
this does not remain true for solutions of the numerical approximations (3) or (12). Their dispersion 
relations (the relations which replace (17) in these cases) are no longer linear. They are derived 
by inserting a sinusoidal trial solution in the equation and seeking the relation between w and 5 
that must be satisfied. For instance, in the fully discrete case (12) we choose the trial solution 

.', = , i(ojAt + 5nh) (18) 

respectively. A search for the condition under which the trial solution (18) satisfies (12) then 
results simply in 

A w )  = 4 5 )  (21) 
or 

which is the dispersion relation for (12). This relation is illustrated in Figure 1, where the abscissa 
is also labelled with the wavelength 

1 = 2 4 5  (23) 
as an alternative independent variable. The analysis is meaningful only when 151 d n/h 
(or 1 2 2h), which is an expression of the sampling t h e ~ r e m . ~ * * ~ ~  

When we let At + 0, then the full discretization (12) becomes the semi-discretization (3) and (22) 
becomes 

which is the corresponding form of the dispersion relation. 
The phase velocity is defined by 

w c * =  - _  
5 '  

which gives, with (22), 

arctan[&( sin (5h) 
c* = 2 1 -/?+pcos(5h) 



- 
0 

m 2 b  A 

Figure 1. Dispersion relation for the finite difference (p  = 0), finite element (p  = 1/3) and box (p  = 1/2) methods. 
R ( cAt/h) = 0.75 

I 

I[ 
Ch 

+.- ~ _ _  - - ~ - ~~ -~ ~ _ _  
2 h  x m 

Figure 2. Phase velocities for the finite difference (p = 0), finite element (p = 1/3) and box (p  = 1/2) methods-the same 
cases as those given in Figure 1 
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(Figure 2), where 

R = l T l  cAt 

is the Courant number. In the semi-discrete case ( R  -+ 0) then c* becomes 

>- sin ( t h )  C* =- 
1 - B + Bcos(th) 

as may be noted, the phase velocity of the numerical solution is always non-negative. This will 
stand in contrast with group velocities: it will be seen in section 5 that the group velocities of 
solutions of this family of algorithms may assume both positive and negative signs. 

3. ENERGY CONSERVATION 

If we multiply (3) by 2hu, and sum over T I E ( -  00, a), then we find, for {u,} of finite I ,  
norm: 

This defines 

as a quantity which is conserved by solutions of the Cauchy problem for the semi-discretization (3). 
We shall, in the present context, call 8, the energy (or natural energy) of {u,}. Its expression 
in Fourier space is the modified form of Parseval’s re la t i~n: ’~  

where w( t )  is the weight function: 

w ( t )  = 1 - 1.3 + pcos(5h) 

and ii(& t )  is the discrete x-Fourier transform of { u,(t)}: 

The inverse of G(5,  t) is 

We may verify that when B 6 5, w(5) cannot be negative. With (31a), this shows that &, is also 
always non-negative, as should be expected of an energy-like quantity. 

The integrand of (31a): 

lZi(5, t)l2 w(5) (34) 

is the spectral distribution of the energy of u. It is easily verified that this energy distribution 
function is invariant with respect to time: 
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lWL t)I2 W ( t 3  = lWs(5,0)I2w(5). 

The distribution of energy in physical space: 
(35) 

is of course time dependent. 

square of the 1, norm of u (which we shall call the I ,  energy of u in the present context): 
It could be argued that not only is (30) invariant with respect to time, but that so also is the 

But when the analysis is extended to include irregular grids (i.e. when h is no longer a constant), 
then the corresponding form of (30) remains invariant, whereas that of (37) does not (see sections 11 
and 14 below). Because of its invariance property, B, is a more appropriate measure 
than (37) to be used in the analysis of reflection or scattering at mesh variation interfaces and 
boundaries. The 1, energy is however also of practical interest. It is this quantity (and not 8,) 
which measures what users call 'spurious noise' in a given computation. (The 1, and natural 
energies are identical in the finite difference, B = 0, case.) 

The same form of invariant energy applies to the fully discrete case. To show that this is so, 
we multiply equation (1 1) by hAt(ul" + ui )  and sum over all n to obtain simply 

(38) & j +  1 - ,$j - 0 
B ,- ' 

which is the discrete time analogue of (29) which applies to solutions of the Cauchy problem 
for (1 1). 

When dealing with finite domains, then the corresponding definition (30) for the energy contains 
a finite instead of an infinite sum. The energy conservation principles (29) and (38) become 

(39) 
dB 
2 = boundary terms 
dt 

and €r ' - ciTj = boundary terms. 

It is to be noted that these principles merely reflect the preservation of similar principles that 
apply to true solutions of (1). Solutions of that equation satisfy 

[ U(X, t)], dx = 0 

when U(x, t) belongs to a Hilbert space and the computing domain D is the entire real axis; (39) and 
(40) are the analogues of 

p JI [ U (x, t ) ]  dx = - c [ U ( A ,  t), - U ( B ,  t),] 

when D is finite. 
Some comments are in order: 'trial solutions' of the form (18) are not of finite 1, norm and 

they do not formally have Fourier transforms. By contrast, the solutions considered in the 
present section are of finite 1, norm (they belong to a Hilbert space); they can be Fourier 
transformed, and Fourier analysis applies with all its power, including in particular the 
quantification of the magnitude of solutions with energy norms expressed by integrals of the 
forms (31)-(37). 
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4. ANALYSIS WITH t-FOURIER TRANSFORMS 

We have, in the preceding sections, introduced x-Fourier transforms into the analysis. Wave 
propagation may also be analysed with t-Fourier transforms. This will turn out to be the 
appropriate tool for the description of scattering or reflection at boundaries and mesh refinement 
interfaces. (Relevant comments on those new aspects of wave propagation which are revealed when 
the frequency w is introduced into the analysis-as is the case when one uses &Fourier 
transforms-may be found in Brillouin’s reference to Lord Kelvin’s work on light propagation 
in crystals (Reference 30, p. 5). 

The discrete t-Fourier transform of (u,,} is defined as 

Its inverse is 

Taking the discrete t-Fourier transform of equation (12) results in 

This equation may be solved analytically by seeking normal solutions, i.e. solutions for which the 
ratio 

is independent of n. Inserting this in (45) results in the characteristic equation 

for B. This equation has the two roots 

where jj is the dimensionless quantity 

Equation (45) thus admits two types of solutions, which satisfy 

and 
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respectively. It will found later on in the analysis that solutions which satisfy (49)-which we shall 
call solutions of p type-are, when o + 0, consistent approximations of genuine solutions of the 
problem at hand, whereas solutions which satisfy (50)-which we shall call solutions of q type- 
are entirely spurious. 

It is easily verified that for values of o which satisfy the equation 

(where o, is defined as the cut-off frequency), we have 

i.e. 

is the frequency band in which constant amplitude wave propagation may exist. As we shall see, 
solutions of p and q type are characterized, in that band, by rightgoing and leftgoing wave 
propagation, as described by their respective group velocities. This will be examined in the next 
section. 

When 101 > o,, then solutions which are sinusoidal in time may still exist, but they cannot have a 
constant amplitude in space; these are the ‘evanescent solutions’ that will be analysed in section 9. 

The explicit form of the cut-off frequency obtained by solving (51) is (Figure 3) 

2 1 
(54) 

Figure 3. Cut-om frequency versus the parameter p for Courant numbers R = 0.1,0.5,0.75,1,2 and 5. For large values of R,  
the cut-off frequency approaches that introduced by the time discretization alone, which is coc.Ar = n/At or w,.~,,Jc = n/R 
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which becomes, in the semi-discrete case ( R  +O), 

c 1  
0 =- 

hJ(1 -2B)’ (55) 

Of particular interest is the case p = 1/2 (the box method). The cut-off frequency (54) is then 

7c 
0 =- 

At’ 

which is half the sampling frequency of the time discretization, and is independent of the space 
discretization step h. The expressions of (49) and (50) become 

1 -ijij2 
1 + ijij2 

E,(w) = ___ 

and 
E,(o) = - 1 .  

(57) 

The fact that the relationship between p and I? is rational indicates that the 3-point algorithm (12) 
may in this case be decomposed into two 2-point algorithms which admit (57) and (58) as their 
respective solutions. 

Indeed, it may be verified that (57) and (58) also describe the solutions of 

and 

q n t 1  = - q n ,  (60) 
respectively. When M is the Crank-Nicolson operator, then (59) may also be written as 

(61) 

No such 

C 
= - ~ c ( d . ~ : - d . + ’ ) + ( ~ + 1 - d . ) l ~  

which is the usual form in which this method may be found in the 
decomposition is possible for other values of p. 

5. GROUP VELOCITY 

The group velocity is the velocity at which sinusoidal waves propagate energy in a dispersive 
medium.30’33’52 Its expression is 

dw G =  -- 
d5 ’ 

where w(5)  is the dispersion relation. A first expression of the group velocity for solutions of (12) 
may be obtained with (22). We find 

p + ( 1  - B ) c o s ( ~ ~ )  dm 
(63) 

G = c  
[ 1 - p + p cos (5h) ]2  G’ 

with (Crank-Nicolson case) 
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- = c0sz ("2") dw 
dP 

(64) - - c1 - P + PC0S(5h)lZ 

[ 1 - P + p cos (5h)lZ + 
This gives (Figure 4) 

The expression of the group velocity G as a function of the frequency o may be obtained by making 
use of the evident identity 

0 

( a )  

Figure qa). Group velocity versus wavenumber for B = 0,1/5,1/3,0.4,0.45,0.47 and 1/2. R = 0.25 
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C 

( b )  

Figure qb). Group velocity versus wavenumber for p = 0,1/5,1/3,0.4,0.45,0.47 and 1/2. R = 1 

which is an operator form of the dispersion relation. From this results 

Re[E(w)] = cos(5h) (67) 
and, with (63) and (64), 

where the subscripts p and q refer to the two types of solutions defined by (49) and (50). 
Important to note is the fact that G, is always positive when 101 < w,: solutions of p type 

are rightgoing. Moreover, G, tends to c when oh -, 0. This is an expression of the consistency 
property of solutions of p type. 

By contrast, G, is always negative for the same frequencies, which makes solutions of q type 
leftgoing and spurious. 

This deserves some comments: when one talks of leftgoing and rightgoing (sinusoidal) solutions, 
it is implied that one refers to the direction in which those solutions propagate energy, or wave 
packets. The corresponding velocity is the group velocity, not the phase velocity. It has been 
seen in section 2 that phase velocities are always non-negative. The observation of the fact that 
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Figure qc). Group velocity versus wavenumber for /3 = 0,1/5,1/3,0.4,0.45,0.47 and 1/2. R = 2 

solutions of q type are leftgoing, and the analysis of reflection and related boundary phenomena 
to which this observation will lead, would be inaccessible with the use of phase velocities alone. 

Since the group velocity is equal to minus the slope of the dispersion curve, it may be observed 
(for instance with Figure 1) that solutions of p type correspond to smaller wave numbers (or higher 
wavelengths extending upwards to A =  a), whereas solutions of q type correspond to higher wave 
numbers (or smaller wavelengths extending downwards to 1 = 2h). 

We note (Figure 4(a)) that when f i >  1/3 and R < 1, then there are wave numbers in 
I ( h l ~ ( 0 ,  n) for which G > c. That the value fi = 1/3 separates those cases which admit group 
velocities greater than c from those which do not is directly related to the fact that the 
corresponding method (the linear finite element/Galerkin method) gives the highest degree of 
consistency attainable with this family of algorithms, sometimes called the superconvergence 
property of the corresponding case.34 A note of caution: this superconvergence property of the 
finite element method applies only to the case of regular grids (h  = constant) and is thus often 
lost. It is indeed frequently the case that non-equal elements, and in several dimensions 
non-rectangular elements, are used in practice. 

That the discrete equation (12) admits two types of solutions results from the fact that this 
equation is of second order (whereas the original equation (1) is of the first order). If we let 
JoAt l+O,  then the dispersion relation (22) gives the two corresponding wave numbers: 

Ithl-+O; 15hl-t.. (70) 
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It may be shown independently that when loAtl-+O, then (12) becomes the system 

ap ap  
at ax -+c--0, 

- aQ - c (-)” 1 = 0,  at 1 -2p  ax 
where P and Q are the analogues of solutions in Ithl-.O and Ithl+n, respectively 
(References 29, p. 83; see also Figure 13 below), i.e. the numerical approximation(l2) is consistent 
not only with the first order equation (l), but also with the second order system (71). And it is 
interesting to note that the characteristic velocities of that second order system are corres- 
pondingly related to the group velocities: 

c = lim G,(o), 
w-0 

- c  - = lim C,(o). (72) (1:zg) w-0 

In the particular case of the box method and R < 1, then G is monotonically increasing from 

G(<h = 0)  = c (73) 
towards its maximum value when 1thl -+n: 

This describes solutions of p type, i.e. those which satisfy (57) and does not include the point 
Ithi = n. Solutions of q type are singular in this case: they correspond to the single wave-number 
Ithl = n (or single wavelength 1 = 2h). And by (69), their group velocity is infinite: 

G,(I(hl = n) = - 00. (75) 
When the box method is implemented as the two-point formula (59) then, obviously, this type of 
solution does not exist. But it does exist with (12),p = 1/2. Illustrations of this type of solution will 
be given in section 16. 

6. THE INITIAL VALUE (CAUCHY) PROBLEM 

It has been shown in section 3 that the energy of (u,,} (equation (30)) is invariant when (u,,} 
is a solution of the Cauchy problem for (3) or (12). This implies numerical stability. 

Keeping with the wave analysis viewpoint, an initial function 

{ u : )  imposed in D = ( -  co, co) (76) 
may be considered as the superposition of Fourier components of different wave numbers. The 
separation in x-Fourier space between rightgoing and leftgoing solutions may be obtained by 
pursuing the analysis of section 5: the separating wave number 5 ,  is that which corresponds to a 
zero group velocity. Equating (63) to zero results in (Figure 5) 

t C h  = arccos (&), (77) 
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RIGHTGOING SOLUTIONS 

O 1  ( 

Figure 5. 

5 P 

which is independent of the Courant number R .  And (, is obviously related to o, (equation (54)) by 
the dispersion relation. 

Fourier components of uo are thus separated into rightgoing components (of p type) for 

0 G 15hl < 5,h (784 

and leftgoing components (of q type) for 

5,h < 15hl d n. ( 7 W  

Numerical experiments with wave packets 

Single, monochromatic sinusoidal functions (or Fourier components) extend formally from 
- CQ to + CQ and they cannot be used to conduct meaningful numerical experiments, which are 
necessarily in finite domains: a natural procedure for the implementation of such experiments 
consists of using wave packets (also called wave groups). The classical definition of a wave packet is 
given, somewhat heuristically as: ‘a sinusoidal function of finite length, comprising only a limited 
number of wavelengths’ (a good expositions of these concepts may be found for instance in 
Reference 30). A convenient form of expression for such wave packets (to be used for the generation 
of initial data) is that of a sinusoidal function with a Gaussian envelope of standard deviation 0: 

(794 u ( ~ ,  0)  = e-(l/z)[(x-xo)/a12eirox, 

Its Fourier transform also has a Gaussian envelope, of standard deviation l/a: 

10 (5.0) I = ~ J 2 . n e - l ’ 2 ~ ‘ 5 - 5 0 ~ o l ~ ~  (79b) 

But (79) is only the approximation of a wave packet: both (79a) and (79b) have infinite support. By 
contrast, an ideal wave packet should be of finite length in x and of vanishingly small wave number 
(and frequency) bandwidth. 
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It is, however, the case that the energy of (79) is concentrated, to within a negligible remainder, in 
a finite region near xo in physical space, and in a narrow wave number band near to in Fourier 
space (the energy of (79a) which is contained outside of (xo - 50,x0 + 5 0 )  is of the order of 
times the total energy, and likewise in Fourier space). The product of the approximate widths 
of the two corresponding distribution functions is of order one: this is an expression of what is 
known as the bandwidth theorem in Fourier analysis. Loosely stated, it says that this product is 
bounded from below by a number of order one for any function U ( x ) .  Moreover, this lower 
bound is reached by Gaussians of the form (79a). One cannot create, for the purpose of conducting 
numerical experiments, ideal wave packets of finite support in physical space, and (79a) is the 
best approximation thereof one may get. When 0 is reasonably large with respect to the wavelength 
,lo = 2rc/5, then (79a) approximates a wave packet of wave number to. 

This is no different from the situation in quantum mechanics where elementary particles and 
their associated wave trains are subjected to Heisenberg's uncertainty principle. This principle and 
the bandwidth theorem of Fourier analysis are essentially expressions of the same mat he ma tic^.^^ 
This is our first encounter with the analogy between numerical wave propagation and 
mathematical physics. Others will follow. 

Given in Figure 6 are the results of numerical experiments which illustrate the difference in the 
wave propagation property of solutions of (12) for different values of 8. The initial function 

imposed in D consists of two superimposed wave packets, one of which is a solution of p type with 
wave number satisfying lchl +O (or wavelength A+ co), the other of which is a solution of q type 
(when 8 # 1/2) with 15/11 + rc (or 2 + 2h). The two wave packets move at the corresponding group 
velocities: 

G (  I < h  I = 0)  = c (80a) 
and 

The band of wave numbers which correspond to leftgoing solutions decreases as 8 increases, and 
disappears when f l =  1/2 (box method). Correspondingly, the saw-toothed wave packet of 
Figure 6(d) may be observed to be a solution of p type, and not of q type as it is for other values of 8. 
Solutions of q type are restricted with the box method to the single point I c h  I = 71. We shall see in 
section 16 that it takes boundary conditions (as opposed to initial conditions) to generate those 
solutions. 

Although group velocities are essential to the analysis of spurious reflection phenomena, it 
must be noted that they are not needed to express the error in numerical approximations of the 
Cauchy problem on a regular discretization of the x axis. To illustrate this, consider the scheme (12) 
on XE( - 00, co) with the initial condition (76). The numerical solution may be expressed 
analytically as 

where no(() is the Fourier transform of { u ; } .  

sampling (Reference 29 pp. 16-17) and 
If o(<,O) is band limited in ( -  n/h, n/h), then there is no aliasing associated with the initial 
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' i Z O ( 5 )  = 0 (5 ,  0). 
The true solution of this problem is then 

This gives the following expression for the error: 

DO (5 )  ei<xn(e - itc*(<)tj - - i@tj  d5 
S"/h )2n. uj, - U ( x n ,  tj) = 

Its I ,  energy may be expressed by use of the discrete form of Parseval's relation: 

which indeed depends on the algorithm used only through the phase velocity error 

C*(t) - c. 

7. ENERGY FLOW AND CHARACTERISTIC IMPEDANCE 

The total energy flow across a mesh point x n  is expressed by36,52 

427 

(82) 

(83) 

(84) 

where the weight function w ( o )  is derived from (31b) and the dispersion relation to replace < with 
w. All calculations done, this results in 

where W(o)  is 

W(0)  = f c J [ l  - (1 - 2p)g] cos2 ~ 

("2"'). (89) 

In classical wave propagation theory, this quantity is the real part of the characteristic admittance 
(or inverse of the characteristic impedance) of the medium and 

@ p ( o )  = Ian(o)IzW(o) (90) 
is the spectral distribution of the energy flow. 

The function W(o)  may also be expressed simply as 

W(0)  = f cJ1 - [p(o)/p(oc)]2 cos2 - (?) 
where o, is the cut-off frequency (54) and where the parameter p does not appear explicitly any 
more (it appears implicitly in o, which is a function of p). 

Interesting to note is the fact that absolute value I W(o)I is the same for leftgoing and rightgoing 
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solutions. By contrast, the flow of I ,  

R. VICHNEVETSKY 

energy 

has the spectral distribution 

= Iii,(a)I G(w), 

which has not, in general, the same property of symmetry, since 

when f i  # 0. 
We may also express W in terms of wave numbers: 

W ( 4  = G ( 4 ) W ( O  

(95) 
CP + (1 - B) cos (5h)l C1 - B + B cos (5h)I 

= C  

[l - D + B c o ~ ( t h ) ] ~ +  

For the box method, (89) gives the interesting result 

W ( w )  = c cos2 (F), 
which depends on At, but is independent of h. In the semi-discrete case ( R  = 0) this becomes 

w = c ,  (97) 
which is equal to the exact value for solutions of (1). 

The mathematics which describes energy flow also provides a link between x- and t-Fourier 
transforms: equating the energy flow (88) for a solution of p-type which is initially contained in 
x < x, with the expression (31a) for that energy gives the relation 

lp(t,O)l= IPn(w)IGp (98) 

8. THE BOUNDARY VALUE PROBLEM 

We will, with the preceding mathematics, compare the responses of the algorithms under 
consideration when they are used to obtain a solution to the boundary value problem. 

We consider the computing domain consisting of the half space 

D = x a O ,  (99) 

and x = 0 is an upwind, closed boundary with 

U(0, t )  imposed. (100a) 

It is assumed that the initial state is quiescent, i.e. that at some initial time we have 

{U,(O)} = 0. (100b) 

Note that since the solution in D originates from the left, it may consist of rightgoing components 
only. 
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Accordingly, we have in response to (100a), 

n/At 

u', = 
- n/At 

(to be read [ ] to the power (n)), where u,,(w) is the &Fourier transform of u(0,t)  sampled 
at the discrete points tJ = jAt :  

The energy of u, 

( 102a) 

(102b) 

is of course not a constant, since energy is allowed to flow into D across the upwind boundary. 
Assuming that U(0, t )  is in a Hilbert space (i.e. is of finite Y 2  norm), the total energy flowing 

into D will also be finite and may be expressed by 

82 = lim b$ 
j-m 

which becomes, in the semi-discrete case, 

a,( co) = lim &,(t) 
t -m 

Note the difference in the limits of integration between (101) and (104), (105): whereas Fourier 
components for 1 0 1  2 o, are allowed in (101), only those corresponding to 101 c o, need 
be included in (104), (105), since those corresponding to higher frequencies do not carry energy, 
and their contribution to the integral is nil. 

Although Fourier components of the solution corresponding to 101 > o, do not carry energy 
into D, they are nevertheless not identically zero. Their nature is analysed in the following section. 

9. EVANESCENT SOLUTIONS 

By the mathematics of the preceding sections, when an upwind sinusoidal boundary condition is 
imposed with afrequency which exceeds the cut-off frequency, the solution in D cannot consist of 
a constant amplitude sinusoidal wave, nor can this solution carry energy away from the boundary. 

What exists in D in response to this boundary condition is an 'evanescent solution', which 
may be described with the expression (49) for EP derived earlier. 

With IwI > o, and for 

(106) u j  - iwjAt 0 -e  

we find 
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0 10 2.0 4.0 6.0 8-0 10.0 

Figure 7. Amplitude decay per cell of the evanescent solutions as a function of frequency for = 0, 0.2, 1/3, 0 4  and 
0.45: - - cut-off points 

where (Figure 7) 

This solution consists of a sinusoidal function modulated by an envelope which decays 
exponentially with n, at a rate which increases with [wI -0,. The asymptotic value of the 
amplitude decay per cell (measured by the absolute value of 8) is 

which is zero in the finite difference case (p = 0), but remains finite in all the other cases. 
The wavelength of the evanescent solutions is given by (Figure 8) 

2nh 

- + arctan (Pp(o)) 2 

1, = 
71 

4h 

1 + -arctan (&(a)) 

- - 
2 
71 

and is contained in 

4h G h. 
2 

2h < 1, < 1, = 
1 + -arctan 

71 

With finite differences (/3 = 0) (1 10) becomes 

1, = 4h, 
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2h 

Q 

43 1 

-\-- 

p L  
C 

10 2-0 4.0 6 0  8.0 10.0 

p =  0 0  4h 
I 
I 

I :  
I :  

Figure 8. Wavelength of the evanescent solutions as a function of frequency for a = 0,0.2, 1/3,0.4 and 0.45: ---cut-off 
curve; 0--cut-off points 

i.e. the evanescent solutions have in this case the constant wavelength 4h independently of w. This 
interesting property was first described in Reference 11, and that it ceases for other values of p was 
noted by Foreman' in the context of a finite element/Galerkin approximation of the shallow 
water wave equations. Numerical illustrations are shown in Figure 9. 

The case of the box method is again special: we have seen in section 4 that the cut-off frequency is 
then w, = .rr/At, half the sampling frequency resulting from the time discretization step At: no 
components with a frequency 1 0 1  beyond w, are present in { u i }  after sampling of U(O,t), 
and evanescent solutions simply do not exist. Moreover, for values of fl which approach 1/2, 

(i.e. amplitude decay disappears as p -, 1/2). 
If we consider the case of a boundary condition { u i }  which is not a single frequency sinusoidal 

function, but is a general waveform of finite 1, norm whose Fourier transform is contained, to 
within a remainder of negligible energy, in IwI > w,, then (104) will give 

8; = O .  (1 14) 

The solution in D is however not identically zero: it is still expressed by (101). But although energy 
flows into D during some of the time, it eventually returns entirely to the left across the boundary. 

Other than in the case of the boundary value problem described here, evanescent solutions also 
appear in the cases of internal reflection that will be examined in sections 11 and 15. 

10. STEP RESPONSES 

There are significant differences in the manners in which the different algorithms considered 



i l  I !  I i  

Figure9. Response at t = 150 to a sinusoidal boundary condition beginning at t = O  at the upwind boundary. 
R = 0.5; w, = 0.98; = 0. Note the sharpness with which the solutions pass from constant-amplitude to evanescent when 
w passes through w,. Note also that (to the accuracy afforded by visual observation) A = 4h in all cases where w > w, 
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respond to a step change in the imposed value at an upwind boundary. As will be shown below, 
those step responses may vary significantly with both 

We consider the initial/boundary value problem 
and R. 

with 
D = x ~ [ O , c o ) ;  u;=O; n=1,2 ,3  ,..., 

uj ,= 1; j=0 ,1 ,2 ,  ... 

The discrete t-Fourier transform of (107) is 

~ 

- io At12 r.7 At 
U o ( 4  = 2i sin (oAt/2) 

What is important in this expression is that it contains a significant amount of energy in the higher 
frequencies, where phase and group velocity errors are significant. 

Step responses for P = 0 (the finite differences case), P = 1/3 (the finite elements case) and P = 1/2 
(the box scheme) are illustrated in Figures lO(a)-lO(c) together with an interpretation of the 
observed difference in the light of the wave propagation properties of these algorithms derived 
earlier in this paper. 

It  should be mentioned that several of those step responses may be expressed in closed analytic 
form.4 

PART 11: REFLECTION PHENOMENA 

11. WAVE REFLECTION I: MESH REFINEMENT 

It is in the investigation of parasitic phenomena associated with boundaries and irregular grids 
that the Fourier analysis/wave propagation viewpoint takes its full power. Representative 
contributions to this question include those of Browning, Kreiss and Oliger,’ Chu and Sereny,13 
Engquist and Majda,I4 Vi~hneve t sky ,~ ’ .~~  Halpern,16 Trefethen,l8*l9 Foreman’’ and Wagatha.” 

The mesh refinement problem serves as a convenient device for the introduction of the relevant 
concepts and mathematics entering in the analysis of spurious reflection (also called scattering): 
consider two piecewise uniform discretizations of the x axis which interface at x = 0 (Figure 11): 

x, = nh,, when n < 0, 
x, = nh,, when n > 0. 

A natural way to extend (12) is then 

when n < 0, 

when n > 0, and 

(119a) 

(119b) 

(119c) 

when n = 0. 
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h =  hL 0.0 h = hR 

\ P  I 

REFLECTED SOLUTION TRANSMITTED SOLUTION 

Figure 11. Mesh refinement 

The equation (1 19c), which applies at the interface point, is obtained when the weighted residual 
procedure (5)-(7) is extended to allow for a non-constant h by letting 

1, in XE[ - 2flh,,2flhR] 

It may be verified, by the same construction as that of section 3, that the corresponding energy, 
defined on an irregular ,grid as 

is again an invariant with respect to time when { u i }  is a solution of (1 19). As in the regular mesh 
case (h = constant), this implies stability for the Cauchy problem in the 8, norm. It should also be 
noted that no such invariance principle applies to the I ,  energy of solutions of the Cauchy problem 
for (119). 

When a rightgoing solution arrives from the left, then a process of reflection or scattering takes 
place at the interface. The appropriate tool to be used for the analysis of this is that given by 
t-Fourier transforms, not x-Fourier transforms. The reason why this is so is that the frequency 
w (the dual variable of t-Fourier transforms) of a sinusoidal wave is preserved during refection 
whereas its wave number t: is not. 4 

Consider thus in x < 0 a solution of p type which arrives at the interface (Figure 11). Let p o ( o )  be 
the Fourier transform of the incident solution arriving at x = 0, q,,(w) be the Fourier transform of 
the reflected solution at the same point and ro(w) be the Fourier transform of the resulting 
rightgoing solution in x > 0. 

The amount of reflection is expressed in Fourier space by the amplitude reflection ratio 
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mesh 
coarsening 

-1 0 

refinement Y mesh 
I I 

Figure 12. Amplitude reflection ratio in mesh refinement. With the frequency normalization used on the horizontal axis, 
this Figure is the same for all values of 1 

J[ 1 - (1 - 2p) ($)’I -/[ 1 - (1 - 2 4  $)2] 
T O  (4 ~- 

‘F;(w) =’(a)=/[ 1-(1-2b) (p:)’] ~ +J[ 1-(1-2P) (ptR>’] ~ 

(Figure 12): which is obtained by Fourier transforming equation (1 19c) and eliminating values 
of the solution in n = 1 and n = - 1 by use of (49) and (50).” 

If we were interested in suppressing reflection for a specific frequency coo, this could be achieved 
for instance by choosing different values for p on the left and right half axes, so as to equate WL(wo) 
and WR(wo). Although possibly of little interest in numerical analysis, this is closely related to the 
process of ‘impedance matching’ well known in the field of communications engineering. 

During reflection, the wave numbers of the incident and reflected waves are related by the fact 
that they correspond to the same value of w in the dispersion relation (see Figure 13). We may note 
that this relation is independent of At:  indeed, the relation between the two roots 5 ,  and rq, which 
are obtained when (22) is solved for 5 with w given, is independent of At. This property is an 
expression of a more general invariance principle to which we shall return in section 13. 

In the particular case of well resolved incident solutions arriving at the interface (these are 
solutions corresponding to wave numbers near 15hLl = 0) the reflected solutions have wave 
numbers near l<hLl = n, or wavelengths near A = 2hL, which results in their typical saw-toothed 
appearance (this holds for all values of p): spurious solutions of this kind are illustrated in 
Figure 14. 

We may use (1 22) to measure the reflection of energy; the corresponding reflection ratio is simply 
the square of the amplitude reflection ratio: 
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W 

437 

RIGHTGOING SOLUTIONS ; LEFTGOING SOLUTIONS 
I 

I I 

Figure 13. During reflection, the wave numbers of the incident and reflected solutions are related by the fact that they 
belong to the same frequency w (which is an invariant) on the dispersion curve. Well resolved solutions arriving from 
the left correspond to lt,hLI-O, and the resulting reflected solutions thus correspond to 1(,h,l-n. When R is 

finite, then these 2 types of solutions are described by equations (71a) and (71b), respectively 

where 

and 

= IG(NI2 WL(4  (124b) 

are the spectral distributions of the flows of incident and reflected energy at the interface point. 
From this we obtain the expression of the reflected energy (in x < 0): 

and that of the transmitted energy (in x > 0): 

One may verify with (122) that the following identity holds: 

WL = p 2  w, + (1 + p)’ w, . (127) 
Together with the above, this results in a simple expression of the conservation of energy flows 
across the mesh refinement interface: 
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8; = 8; + 8; ( 1  28) 
where 8) is the incident energy contained in p o .  It has been noted earlier that, by contrast, no 
conservation of the 1, energy applies during reflection. 

In the particular case of the box method we find 
P p =  1,2(@) =o. ( 129) 

There is no reflection at the mesh refinement interface. An illustration of this is given in Figure 14(d). 
A remark concerning those wavelengths coming from the left for which there is total reflection: 

these occur in mesh coarsening for frequencies which are in the band 

The amplitude reflection ratio has then an absolute value of one, and all the incident energy ends up 
in a leftgoing reflected solution. The reflection process is however not strictly localized in x = 0. 
During reflection, an evanescent solution appears in x > 0. Some of the incident energy goes into 
that evanescent solution and returns to the left later on when the reflection process is completed. 
The coarse mesh in x > 0 acts as soft elastic wall for wave groups of frequency in (130), which 
behave correspondingly as solid bouncing particles. If the right hand boundary were at a finite 
distance from the interface (instead of being at what amounts in practice to infinity), then some of 
the energy contained in the tail of the evanescent solution would reach that boundary and escape to 
the right and not return to the left. This is analogous to the process of ‘tunnelling’ in quantum 
 mechanic^:^' in the latter case, evanescent solutions of Schrodinger’s equation appear in x > 0. 

We also note that the situation just analysed is similar, in the semi-discrete case, to certain well- 
known results concerning propagation properties of mechanical structures and electrical 
networks. Compare for instance Figure 1 1  with Figure 14.2 of Reference 30 and equation (122) 
with equation 23.17 of the same reference. The fact that relations such as (122) continue to apply 
strictly when time is discretized as well is however a new result: only inside numerical simulations 
does discrete-space-discrete-time propagation exist. 

12. WAVE REFLECTION 11: DOWNWIND BOUNDARIES 

If we let hL = h and h, -0, in (1 19), then ( 1  19a) becomes identical to (12) and ( 1  19c) becomes 

(.’o -huL ’>, 
M[PU’- 1 + ( 1  - P ) U ’ , ]  = - c 

which is the natural form of a boundary scheme to be used when the computational domain is the 
half space to the left of x = 0, and x = 0 is an open, downwind boundary. 

Letting h, -+0 in (122) gives the corresponding amplitude reflection ratio (Figure 15): 

- - 
W(w)+ccos2(T) o A t  ’ 

and the energy reflected at the boundary is, as in the preceding case, expressed by (125), with p(w) 
given by the above. 

I 
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O 1  
0 5  

Figure 15. Amplitude reflection ratio for the natural boundary scheme (131). As for Figure 12, this Figure is the same for all 
values of B 

If we pursue the analysis of the preceding section, we may apply the energy conservation relation 
(128) to the present case by considering that the energy flowing outside D is still given by (126), with 

W,(o) = W,=, = ccos2 (“2”) (133) 

(compare with (96)). 
It is to be noted that, as in the case of mesh refinement, the box method has the interesting 

property that it creates no reflection at the downwind boundary. 
The analytical description of amplitude reflection at mesh interfaces and boundaries 

(equations (122) and (132)) has been expressed by using only the characteristic admittance W ( o )  to 
describe the properties of the corresponding computing subdomains. As was shown in section 7, 
W ( o )  appears when wave analysis is considered from the viewpoint of energy propagation. 
Together with relations of the kind expressed by (128), this emphasizes the role played by energy 
concepts in the mathematical description of (parasitic) reflection at mesh refinement interfaces 
and at boundaries. 

It may be useful to summarize this and previous remarks as follows. T h e  process of wave 
refection at boundaries and mesh refinement interfaces has two invariants: the frequency o and the 

Implicit in the above is the fact that the natural way to write boundary and interface equations is 
being used (namely (1 19) and (131), which are consistent with (12)). 

Note, however, that this natural way of treating interfaces and boundaries is not necessarily 
the best. This will be illustrated with the following example in which the box algorithm, i.e. (1  3 1) 
with B = 1/2: 

energy 8, 
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Figure 16. Comparison of the amplitude reflection ratio generated by the box scheme used at the downwind boundary 
of a computing domain in which the approximation uses another value for p (bottom curves) with that generated by 

the natural boundary scheme (131) (top curve) 

is used at the downwind boundary of a computing domain where (12) applies with another value 
for B. The general expression of the corresponding amplitude reflection ratio is 

where EP(o) and EJo) (equations (49) and (50)) describe the wave propagation properties in D. It 
may be verified that this expression converges to zero as O ( 0 3 h 3 ) .  By contrast, the amplitude 
reflection ratio (132) corresponding to the natural treatment of the boundary converges to zero 
only as O ( 0 2 h 2 ) .  A graphical comparison is given in Figure 16. 

This superior property of the box algorithm used at the boundary with some other algorithm 
used in D has not escaped the attention of workers in the field. For instance, mention of this may be 
found in References 13 and 15, both having to do with numerical approximations of the shallow 
water wave equations. 

13. AN INVARIANCE PRINCIPLE 

We have made earlier reference to an important independence (or invariance) principle which 
applies to the class of reflection phenomena that have been examined. One of its expressions 
may be stated in the form of a theorem (from Reference 38, where a formal proof may be found). 

Consider, for the mesh refinement problem of section 11 or the downwind boundary problem of 
section 12, an initial function { uf } which is imposed to the left of the reflection point. The 
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time I 
Figure 17. Comparison of two solutions with different values of At: V(x,O) = e-1/21(x-x0)/012; u = 10; h = 1 in both cases 

rightgoing portion of this initial function will be partially reflected at xo as described by the 
expression (125) of the reflected energy. Then 

Theorem. The energy 8; reflected at xo is invariant under time discretization, i.e. is 
independent of the value of At used in the time stepping algorithm. It is strictly equal to the 
energy reflected in the semi-discrete case (when M = d/dt). 

Although the nature of the numerical solution may be significantly different when the value of At is 
changed, what this theorem states is that, somewhat unexpectedly, this difference leaves the 
reflected energy invariant, as long as the initial data { u."} are left unchanged. 

Given in Figure 17 and 18 are the results of a numerical experiment which verifies this theorem. 
A more general (if less precise) statement of this principle is as follows: In those numerical schemes 
which are obtained (as in this paper) by applying to a spatial semi-discretization of the equations 
the same conservative and stable time discretization algorithm consistently everywhere ( = method 
of lines), and in those cases where initial data only are specified, the total energy transmitted or 
reflected at any given point of the computing domain depends on the space discretization alone. 

a 
Instances of the application of this principle are noted elsewhere in this paper (cf. sections 11 

This invariance principle has interesting implications, namely 
(i) As long as parasitic solutions are measured in the appropriate energy norm, the analysis of 

many spurious reflection phenomena may be analysed in the semi-discrete case-which is 
simpler than the fully discrete case. 

and 15). 
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E 

10.0 

1 .c 

0.1 

0.01 

0.001 

energy 

logarithmic scale 

C O  = 17.72453 

20.0 40.0 60.0 80.0 100.0 120.0 t 

Figure 18. Energy versus time for the numerical experiments shown in Figures 17(a) and 17(b). Although the time 
histories are different, the total energies reflected are the same for the two cases. Values of BR measured at t = 120 differ 

only in the last significant digit (as explained by differences in round-off error) 

(ii) Corresponding absorbing boundary and interface schemes may likewise be synthesized for 
the semi-discrete equations: their energy absorbing properties will remain invariant under 
t ime-dis~ret izat ion.~~ ,~~  

14. WAVE REFLECTION 111: UPWIND BOUNDARIES 

Parasitic reflection also takes place at upwind boundaries. To illustrate this, we return to the 
domain (99) and consider the case where a solution of q type arrives from the right at x = 0, where 
the condition 

U(0, t )  = 0 (136) 
applies. When this condition is translated into 

u’o = U(0, t’) = 0, 

W o ( 4  = To (4 + To (0) = 0, 

then this results in 

giving the amplitude reflection ratio 
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That Ip(o)l  = 1 implies total reflection of the energy at the boundary. What may be bothersome 
in this process is that whereas the incident leftgoing solution is clearly spurious, with the typical 
saw-toothed, short wavelength appearance, the reflected solution, which is of p type, consists of long 
wavelength components which cannot be distinguished from the consistent approximation of a 
true solution (see, for instance, Figure 6 in Reference 22). 

The modified treatment of the upwind boundary:24 

u’o = 2 u (0, t’) - u{ = - 2.4’1 ( 140) 
used to replace (137) has the property of absorbing spurious solutions instead of reflecting 
them. A geometrical interpretation of this formula is that it consists of imposing U ( 0 , t )  at the 
mid-point (xo + x 1 ) / 2 ,  instead of imposing it at the mesh point xo. (An early description of a 
similar scheme may be found in Reference 39.) 

The corresponding amplitude reflection ratio is easily derived (with (66)): 

As may be verified, there is perfect absorption of solutions of wavelength 2h: 

p,(( ,h = n) = 0. ( 142) 
A detailed analysis of other properties of this scheme is given in Reference 24 for the finite difference 
case. 

15. WAVE REFLECTION IV: INTERNAL REFLECTION 

A different type of reflection may occur at  interior points of a non-uniform, continuously variable 
grid. There are applications where such grids play an important role. One of these (which leads to 
large computer codes) is in the calculation of pressures and flows around aerofoils by numerical 
integration of the Euler equations of gas  dynamic^.^^-^^ 

Published results on numerical wave propagation in irregular grids for hyperbolic equations are 
relatively few. Early mention of this problem may be found in References 43 and 44. One of the first 
detailed theoretical analyses is that of Giles and T h ~ m p k i n s , ~ ~ , ~ ~  who used the so called 
‘asymptotic’ method of standard wave propagation theory to derive some of the basic relations 
that apply to numerical schemes. Propagation in an irregular grid is also examined briefly by 
Trefethen’8p’9 and by Chin and H e d s t r ~ m ~ ~  with special attention to the problem of scattering. 
An analysis of this problem with the mathematics of sinusoidal wave propagation in inhomo- 
geneous media may be found in Reference 42. 

The expression which generalizes (12)  to the case of a one-dimensional irregular grid is (compare 
with (1 19c)) 

IN NON-UNIFORM GRIDS 

~ ’ , - ~ + ( l - p ) u ’ , +  phn+’  u ’ , + ’ ) =  - c (  U i + l  ’ - u L 1  ’ ), 
M(hn!?n+l . h,+h, . l  hf l+h,+1 

(143) 

where h, = x, - x,- is the local mesh size. It may be verified, by using again the same procedure as 
that used in section 3, that the energy 8, expressed by (121) is strictly invariant with respect to 
time when ( u i }  is a solution of the Cauchy problem for (143). 
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When h, varies slowly with respect to x (or n), the wave propagation in the corresponding linear, 
dispersive, non-homogeneous medium is characterized by the following proper tie^:^^.^^ - -  - 

Wave packets of frequency o and wave number 5 are propagated locally as if the mesh were 
uniform. 
During the motion of such wave packets, the frequency o remains constant, and satisfaction 
of the dispersion relation (22) with h variable results in an x dependence of the wave 
number 5. 
The group velocity is given by (63) with h dependent on x and is thus also variable. 
Restricting the discussion to the case b < 1/3: rightgoing wave packets in an expanding 
mesh (dhldx > 0) have a continuously decreasing group velocity. They may, instead of 
leaving the computing domain through the downwind boundary, reach an internal point 
where the group velocity vanishes. This occurs when 

The wave packet is then reflected from rightgoing to leftgoing. 
The same is true for leftgoing wave packets in a contracting mesh (dhldx < 0) which may be 
reflected internally from leftgoing to rightgoing. 

A different expression of the principle of independence of section 13 applies here: the location of 
the internal reflection points defined by (144) is independent of time discretization. Indeed, a wave 
packet may be assumed to have been imposed as initial data with given to and h,. This defines p(o) 
(an invariant of the wave packet) by the right hand side of (22). Inserting this value of p in (144) 
leaves no relationship of h, either to At, or even to the specific form assumed by p(o). 

It may be the case that the same wave packet experiences successively both types of internal 
reflection. An example of this is illustrated in Figure 19 (similar results are given by Giles and 
T h o m p k i n ~ ~ ~ , ~ ~ ) .  When this kind of multiple internal reflection occurs in pracrice, then this may 
result in numerical simulations which cannot reach a steady state, irrespectively of the fact that 
genuine solutions do reach a steady state in a finite time. This takes place, for example, in certain 
large exterior aerodynamic  calculation^.^^^^^ A common remedy for this kind of ailment consists 
of using artificial dissipation. 

The analogy with quantum mechanics which was noted earlier applies here also: the 
propagation of a wave packet in a non-uniform grid is similar to the motion of an elementary 
particle in a space dependent potential field. The mathematics of the two are almost identical, and 
the trajectory of the wave packet illustrated in Figure 19 is the same as that of a particle in a smooth 
potential well.37 

The analogy goes further: the continuous decrease in group velocity experienced by the wave 
group as a whole as in Figure 19 follows the continuous (and slow) variation in the mesh size. But if 
mesh size variations were abrupt instead of continuous, then scattering world occur at the interface 
and part of the wave group would be reflected in the opposite direction. Examples of this have been 
illustrated in section 11, and a further example is given in Figure 20. The physical analogue of this 
is in the process of scattering which occurs when a beam of particles passes across a step change in 
the potential, as described by the mathematics of quantum mechanics (see e.g. Reference 48, 
pp. 36,37). 

16. LEFTGOING SOLUTIONS OF THE BOX METHOD 

The analysis has shown that the box method is a singular point in the family of algorithms 
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time 

Figure 19. Multiple reflection of a wave packet in a 'grid well'. The mesh size is h = 1 at the centre and increases 
geometrically by 1 per cent per node symmetrically in both directions to reach h = 3.3 at the boundaries (B = 0, At = 0.25) 

represented by (12). Instead of displaying rightgoing and leftgoing solutions in response to 
appropriate initial conditions, only rightgoing solutions are obtained. And likewise, no reflection 
from rightgoing to leftgoing occurs when mesh interfaces and boundaries are handled consistently. 

But the box method may be considered as the limit case 

B =  lim(i-d). 6-0 (145) 

Accordingly, solutions of q type must exist, corresponding to the single value l t h l =  7c 
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time 1 

Figure 20. Same case as that given in Figure 19, except for the fact that the mesh size variations are not continuous 
but are implemented as two steps, (a) from h = 1 to h = 1.7 then (b) h = 1.7 to h = 3. The partial reflection or scattering 
which is observed at the mesh interface points (a) would be absent if the mesh size variation were smoothly distributed 

between many points, as is the case in Figure 19 

in Fourier space, and they must have the infinite group velocity (from equation (80)): 

c I=- ... 
Indeed, these solutions are precisely those described by (57)-(59). And, by (28) and (145), their 
phase velocity is zero. 

Although they cannot be generated by initial conditions, they may be generated by mishandled 
boundary conditions. To observe their existence, we have created a perfectly reflecting downwind 
boundary by imposing 

4 o U N D A R y  = 0 ( 147) 
and correspondingly 

n qBOUNDARY (O) - 1. 
( 148) 

PBOUNDARY (0) 

Shown in Figure 21 is the corresponding solution, generated by the total reflection of a smooth 
rightgoing solution coming from D. The leftgoing solution that may be observed follows 

- -  P ( 4  = rn 
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1 

time i 

X 
h 

Figure 21. Generation of leftgoing solutions for the box method by the reflection of a smooth solution at an intentionally 
totally reflecting downwind boundary. Although the total &a energy remains constant (and finite), the reflected I ,  energy 

is infinite. R =0.5. The absorbing boundary scheme (140) is used at the upwind (left) boundary 

instantaneously its value generated at the boundary with a saw-toothed wave having a constant, 
horizontal envelope extending to - co. 

A consequence of (148) and of the symmetry property of the characteristic admittance (section 7) 
is that the incident and reflected energy flows are equal and that therefore the total ( E p )  energy 
remains constant during reflection. 

On the other hand, the fact that the reflected solution is of finite amplitude and infinite group 
velocity implies an infinite flow of reflected I ,  energy. 

Although (147) is of course an intentional mishandling of the boundary that can be avoided in 
practice, the fact that the corresponding 1, energy reflection ratio is infinite is indicative of the 
danger of large amounts of spurious noise that may occur in actual computations. 

An example of this is given by the case illustrated in Figure 22: the simple two-point scheme 

M u $ = - (  2.4'0 - UJ- 1 ) 
is used at the downwind boundary instead of the natural scheme (131), for a computing domain 
where the box method applies. As may be observed, this consistent scheme generates a reflected 
solution of q type, when a smooth solution passes through the boundary, whereas (131) does not. 

The analytic investigation of this problem may be conducted as before: Fourier transforming 
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I X 
___c 

Figure 22. Reflection (in the form of a solution of q type with its characteristic saw-toothed appearance) at the downwind 
boundary of a domain in which the box method is used with the boundary scheme (149). The group velocity of the 
reflected solution is infinite, thus resulting in an infinite amount of 1, energy leaving the boundary. The absorbing 

boundary scheme (140) is used at the upwind (left) boundary 

equation (149) and solving for p = ~o(o)/p”,(o) results in the amplitude reflection ratio: 

(Figure 23). The fact that (150) is finite and that the group velocity GJo) is infinite means that 
an incident solution of finite 1, energy at the boundary will generate a reflected solution of 
infinite 1, energy, whence instability in the 1, norm. 

The interpretation of stability theories for initial-boundary value problems in terms of group 
velocity and energy flows is due to Trefethen,’*-’’ in one of the most elegant applications of the 
concept of wave propagation to the analysis of boundary related questions. One of the standard 
conditions under which instability occurs is when the boundary scheme has an infinite amplitude 
reflection ratio for some frequency o, resulting in the possibility of an infinite energy flow away from 
the boundary. The situation present here is different. What the combination of the box method and 
the boundary scheme (149) produces is aJinite amplitude reflection ratio with, for all frequencies, an 
infinite group velocity pointing away from the boundary, also resulting in an infinite ( 1 , )  energy flow 
away from the boundary. This new mode of instability is of course unique, owing to the singular 
property of the box method that admits solutions with an infinite group velocity. 

I 
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Figure 23. Amplitude reflection ratio of the boundary scheme (149) used at the downwind boundary of a computing 
domain in which the box scheme applies (equation (150)) 

A note about the numerical experiments of Figures 21 and 22: their description implies that the 
computing domain is limited by a downwind boundary at x = 0, and extends towards infinity to 
the left of that point. But the actual computing domain was of course finite: 

as shown in Figures 21 and 22 and the boundary condition (140) was used at the upwind boundary 
x = - L. Since solutions of q type correspond to the single wave number l & l =  n for the box 
method, and since (140) is perfectly absorbing for that wave number (equation (142)), the solution 
in (151) is as if this domain were extending to - co. The saw-toothed solutions (of q type) observed 
in Figures 21 and 22 have the interesting property of being of finite I ,  energy in D whereas the 
corresponding I ,  energy flow that they carry across x = 0 and x = - L is infinite. 

D XE [ - L, 01 (151) 

CLOSING REMARKS 

The numerical approximation of partial differential equations creates errors which may be 
separated into two classes. The first is that of ‘consistency errors’. Those are the errors which 
become vanishingly small when the mesh size is reduced, and which are considered in classical 
convergence theories. The second class of errors, which is particularly important with hyperbolic 
equations, contains what is best described as spurious solutions and they do not necessarily 
disappear when the mesh size tends to zero. It is in the analysis of this second class of errors that the 
wave propagation approach is particularly useful, as has been illustrated in this paper. We have 
examined from that perspective different occurrences of reflection at numerical boundaries, 
scattering at mesh refinement interfaces and internal reflection in non-uniform, slowly variable 
grids. 

Wave propagation theory is closer to mathematical physics than to classical mathematics. It has 
been shown repeatedly that exploiting this close relationship with physics provides both the 
concepts and the semantics without which many of the observed spurious wave phenomena could 
not have been analysed. 
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The model equation and the computational algorithms considered in this paper have been 
relatively simple. But the basic concepts which have been described and analysed are more general, 
and the results suggest obvious applications to a wider range of problems in computational fluid 
dynamics. 
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